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Motivation

Simulation tools such as BlenderProc [2] can
provide a large amount of photo-realistic
synthetic data with annotations required by
robotic vision tasks such as object detection.
However, when relying only on simulation data,
it's hard to resolve the problem of the simulation-
to-reality (Sim-to-Real) gap (Fig.1).

Sim-to-Real Gap

real-world scenario

Fig.1: lllustration of Sim-to-Real gap.

ldea

* Given: An object detector trained with photo-
realistic synthetic annotated data (Fig. 2).
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Fig.2: Examples of real and synthetic data sets.

* Goal: To bridge the Sim-to-Real gap with as
few real annotated data as possible.

* Method: Active learning with a Bayesian
object detector (Fig. 3).
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Fig.3: Pipeline overview.

Approach

Bayesian Neural Network (BNN) object
detector:

- Monte Carlo Dropout for BNN posterior predictive
Inference at anchor-level:
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- Bayesian Inference to replace non-maximum-

suppression (NMS) [1] :
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* Scoring: to compute the Informativeness

(entropy of the predictive distribution) of j-th
detected instance on k-th image and aggregate
them Into one score representing the
iInformativeness of the k-th image:

- Score of category classification:
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- Score of bounding box regression:
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- Acquisition function comprises of
a combination function and an aggregation function:
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Options for combination function:
1. maximum, 2.weighted sum;
Options for aggregation function:
1. average; 2. summation.

« Sampling: To select a subset of data from the

pool set to query from human.

Problem: when employing naive ranking of
scores from the scoring step and selecting the
highest N ones, the problem of fore-ground
class imbalance can cause under-performance.
Solutions: employ two following sampling
strategies.

- Core-set [3]: to select points that can best represent the
pool set based on a distance function between the data

points In the pool set and previously selected set:
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- Ranking after sub-sampling (Fig.4): by assuming certain
degree of redundancy in the data set, we propose to do
ranking after uniform sub-sampling which can generate
more balanced data set:

(a) naive ranking

(b) ranking after sub-sampling

‘ . classes <2selected points - data points from pool

Fig.4: Ranking after sub-sampling.
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Experiment

* Data sets (Fig. 2): 1. self-collected daily object
data set (5 categories); 2. sub-sampled YCBV
data set (21 categories) [5];

* |Implementation detalls: RetinaNet [4] for object
detection; Domain randomization for synthetic
data generation.

* Active learning hyper-parameters:

#iteration: 10; #acquisition: 20 for daily object
and 50 for sub-sampled YCBYV data set .
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Fig. 4. Learning curve during active learning on
daily object data set for 3 random runs.
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Fig. 5: Learning curve during active learning on

YCBYV data set for 3 random runs.

Conclusion

- We present a Sim-to-Real pipeline that can
efficiently use real annotated data to bridge the
gap based on deep Bayesian active learning.

- Empirically we show that the real annotated
Images can efficiently reduce the reality gap iIn
practice by saving up to 60% data.

- Our experiments indicate that the foreground
class imbalance can be one of the factors which
can determine the success of our pipeline In
practice.
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