Density-based Feasibility Learning with Normalizing Flows for Introspective Robotic Assembly

Jianxiang Feng¹*, Matan Atad²*, Ismael Rodriguez¹, Maximilian Durner¹, Stephan Günnemann² and Rudolph Triebel¹

^{1:} Institute of Robotics and Mechatronics, German Aerospace Center (DLR)

^{2:} Technical University of Munich (TUM)

Rodriguez, I., et al. 2019, 2020.

6

7

Data-driven Robotic Assembly

8

Data-driven approaches for Generalizability & Efficiency.

GRACE [Atad, M. et al. 2023]

Data-driven Robotic Assembly

9

Data-driven Robotic Assembly

10

NO DATA

Introspective Robotic Assembly – Assembly Feasibility Learning

Infeasible Assembly

Introspective robotic assembly: Assembly feasibility learning as Out-of-distribution (OOD) detection based on **purely feasible cases**.

Assembly Feasibility Learning via Density Estimation

• Training: **Maximizing** the likelihoods of feasible assemblies.

14

Assembly Feasibility Learning via Density Estimation

• Training: Maximizing the likelihoods of feasible assemblies.

15

Test: Detecting infeasible assemblies with low likelihoods.

Density Estimation with Normalizing Flows

Normalizing flows are a popular class of deep generative models:

- flexible density estimation;
- fast and exact likelihoods computation;

Density Estimation with Normalizing Flows

Normalizing flows are a popular class of deep generative models:

- flexible density estimation;
- fast and exact likelihoods computation;

Experiment - Infeasible Assemblies Detection

	Area Under ROC ↑	
	A_5	A_6
NF, 749 layers, gaussian base	0.85	0.83
NF, 109 layers, resampled base	0.83	-
OC-SVM [4]	0.74	0.59
Baseline (size of predicted set)	0.61	0.57

 A_n : assemblies with *n* parts.

Ablation – Normalizing Flow Density Estimation

Ablation – Normalizing Flow Density Estimation

Ablation – Normalizing Flow Density Estimation

- Log Determinants of Jacobians is the main contributing factor to the final likelihoods.

Ablation – Normalizing Flow Transformation

T-SNE Visualization

Flow Input Space

Ablation – Normalizing Flow Transformation

Flow Input Space

T-SNE Visualization

- Feasible assemblies are pulled together and clustered more compactly when compared to those in the input space before the flow transformation.

Conclusion

- Raising Importance of **Introspection** for data-driven approaches in robotic assembly sequence planning (RASP).

- Formulating feasibility learning as Out-of-Distribution (OOD) detection with normalizing flows based on **only** feasible assemblies;

- Validating on **infeasible assemblies detection** task in simulation, with ablation studies on the working mechanisms of the flows.

- **Explaining** the in/feasibility based on NFs as future work.

Thank you for your attention!